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Abstract 

Algorithms have played an increasingly important role in economic activity, as they becoming 

faster and smarter. Together with the increasing use of ever larger data sets, they may lead to 

significant changes in the way markets work. These developments have been raising concerns 

not only over the rights to privacy and consumers’ autonomy, but also on competition. 

Infringements of antitrust laws involving the use of algorithms have occurred in the past. 

However, current concerns are of a different nature as they relate to the role algorithms can play 

as facilitators of collusive behavior in repeated games, and the role increasingly sophisticated 

algorithms can play as autonomous implementers of pricing strategies, learning to collude 

without any explicit instructions provided by human agents. In particular, it is recognized that 

the use of ‘learning algorithms’ can facilitate tacit collusion and lead to an increased blurring of 

borders between tacit and explicit collusion. Several authors who have addressed the 

possibilities for achieving tacit collusion equilibrium outcomes by algorithms interacting 

autonomously, have also considered some form of ex-ante assessment and regulation over the 

type of algorithms used by firms. By using well-known results in the theory of computation, I 

show that such option faces serious challenges to its effectiveness due to undecidability results. 

Ex-post assessment may be constrained as well. Notwithstanding several challenges face by 

current software testing methodologies, competition law enforcement and policy have much to 

gain from an interdisciplinary collaboration with computer science and mathematics. 
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I. Introduction	

Algorithms	 have	 played	 an	 increasingly	 important	 role	 in	 economic	 agents’	 decision	making	

and	in	economic	activity	 in	general
2
.	They	have	been	present	in	some	markets	and	industries	

for	 a	 long	 time:	 in	 finance	 and	 banking,	 insurance,	 airlines,	 food	 retail,	 e-commerce,	 and	 in	

many	 other	 industries.	 However,	 their	 use	 is	 becoming	 widespread,	 especially	 across	 more	

advanced	 economies,	 namely	 in	 e-commerce	 and	 in	 the	 definition	 and	 implementation	 of	

pricing	 strategies	 in	 general,	 as	 algorithmic	pricing	 software	becomes	 increasingly	affordable	

even	 to	 smaller	 businesses
3
.	Moreover,	 algorithms	 are	 becoming	 faster	 and	 smarter	 which,	

together	with	the	 increasing	use	of	ever	 larger	data	sets	by	market	participants,	may	 lead	to	

significant	changes	in	the	way	markets	work
4
.	

The	 use	 of	 algorithms	 by	 suppliers	 and	 consumers	 can	 both	 benefit	 and	 hurt	 consumer	

welfare
5
.	For	example,	by	reducing	information	and	transactions	costs,	e.g.,	by	making	widely	

available	product	comparison	sites,	they	allow	disposable	income	to	go	further,	enabling	more	

consumers	to	consume	more	and	make	better	choices.	On	the	other	hand,	through	the	use	of	

ever	 increasing	 big	 data	 sets	 on	 individual	 consumers’	 habits	 and	 behavioral	 patterns,	

algorithms	 can	 increase	 the	 scope	 for	 personalized	 pricing	 by	 suppliers,	 leading	 to	 a	 larger	

appropriation	 of	 consumer	 surplus,	 even	 if	 such	 personalized	 pricing	 may	 render	 price	

collusion	less	attractive	and	more	difficult	to	sustain	in	equilibrium.	

These	developments	have	been	raising	some	concerns	not	only	over	the	rights	to	privacy	and	

consumers’	 autonomy,	but	also	over	 the	way	markets	work	and	on	 the	 level	of	 competition	

they	can	sustain.	

Infringements	of	antitrust	laws	involving	the	use	of	algorithms	have	occurred	in	the	past.	As	an	

example,	recall	the	Airline	Tariff	Publishing	Case,	dealt	with	by	the	US	Justice	Department	and	

settled	with	a	consent	decree	 in	March	1994,	eight	major	US	airlines	colluded	to	raise	prices	

and	 restrict	 competition	 in	 the	 airline	 industry.	 Collusion	 was	 sustained	 through	 the	

transmission	of	relevant	information	via	the	Airline	Tariff	Publishing	Company	(ATPCO),	such	as	

information	on	‘first	and	last	ticket	dates’	and	on	‘first	and	last	travel	dates’
6
.		

																																																													
2
		 An	‘algorithm’	can	be	defined	as	a	finite	sequence	of	instructions,	expressed	in	a	precise	based	upon	a	certain	

alphabet,	such	that,	when	confronted	with	a	question	of	some	kind	and	carried	out	in	the	most	literal-	minded	

way,	will	 invariably	terminate,	sooner	or	 later,	with	the	correct	answer.	Notice	that	this	does	not	constitute	a	

mathematical	definition.	There	is	no	agreed	upon	mathematical	definition	of	 ‘algorithm’.	Sometimes	the	term	

‘effective	procedure’	is	used	instead	of	the	term	‘algorithm’.	
3
		 Amazon,	Google,	Microsoft	and	other	companies	supply	off-the-shelf	machine	learning	solutions	and	computing	

capability	-	see,	E.	Calvano	et	al.	(2018a).	
4
		 As	 pointed	 out	 by	 Petit	 (2017),	 a	 common	 thread	 to	 the	 emerging	 literature	 on	 Antitrust	 and	 Artificial	

Intelligence	Literature	(AAI),	is	to	describe	the	increasing	use	of	algorithms	on	markets	as	a	‘game	changer’.	
5
		 On	the	use	of	algorithms	by	consumers,	and	its	effects	on	markets	and	welfare,	see	Gal	&	Elkin-Koren	(2017).	

6
		 As	 reported	 in	 the	March	 18

th
,	 1994,	 issue	 of	 The	 New	 York	 Times,	 «Anne	 K.	 Bingaman,	 Assistant	 Attorney	

General	in	charge	of	the	antitrust	division,	said	the	airlines	used	the	Airline	Tariff	Publishing	system	“to	carry	on	

conversations	just	as	direct	and	detailed	as	those	traditionally	conducted	by	conspirators	over	the	telephone	or	

in	hotel	rooms.	Although	their	method	was	novel,	their	conduct	amounted	to	price-fixing,	plain	and	simple,"	she	

said».	According	to	S.	Borenstein	(2004),	«While	an	agreement	among	competitors	to	fix	prices	is	per	se	illegal,	

computer	technology	that	permits	rapid	announcements	and	responses	has	blurred	the	meaning	of	“agreement”	

and	has	made	it	difficult	for	antitrust	authorities	to	distinguish	public	announcements	from	conversations	among	

competitors»	-	See	also	J.	Klein	(1999).	The	Airline	Tariff	Publishing	system	is	the	property	of	the	Airline	Tariff	

Publishing	 Company	 (ATPCO)	 a	 corporation	 owned	 by	 several	 airlines,	 formed	 to	 serve	 as	 agent	 for	 those	

owners	 (and	 for	 other	 airlines	 or	 vendors)	 to	 file	 and	 publish	 tariffs	 and	 related	 products.	 It	 operates	 as	 a	

clearinghouse	for	distribution	of	fare	change	information.	At	least	once	a	day	ATPCO	produces	a	compilation	of	
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In	the	more	recent	US	v.	David	Topkins	Case,	a	US	District	Court	ruled	that	Title	15,	US	Code,	

Section	1,	had	been	violated.	David	Topkins	apparently	had	coded	an	algorithm	that	enabled	

him	and	his	co-conspirators	to	agree	to	fix	the	prices	of	certain	posters	sold	in	the	US	through	

Amazon	Marketplace
7
.	

In	 December	 2015,	 a	 UK	 citizen	 was	 indicted	 for	 an	 allegedly	 similar	 price	 fixing	 strategy	

applied	to	posters	sold	through	the	online	site	Amazon	Marketplace.	The	indictment,	unsealed	

on	 December	 4th	 and	 originally	 filed	 in	 the	 Northern	 District	 of	 California	 on	 August	 27th,	

2015,	 names	 the	UK	 citizen	 Daniel	 Aston	 and	 his	 company	 named	 ‘Trod’,	 doing	 business	 as	

‘Buy	4	Less’,	as	conspiring	to	fix	prices	for	online	posters	sales	from	September	2013	to	January	

2014.	According	to	Aston’s	indictment,	he	used	commercially	available	algorithm-based	pricing	

software	to	fix	the	prices	of	posters	sold	on	Amazon	Marketplace
8
.		

In	the	Eturas	Case	 (Case	C-74/14),	the	European	Court	of	Justice	(CJEU)	dealt	with	concerted	

practices	 between	 travel	 agents	 through	 the	 use	 of	 an	 online	 platform.	 The	 alleged	

coordination	would	have	taken	place	via	an	online	travel	booking	system	(E-turas,	owned	by	

Eturas)	used	by	more	than	30	travel	agents	 in	Lithuania.	The	Lithuanian	Competition	Council	

(LCC)	 imposed	 fines	 on	 Eturas	 and	 these	 30	 travel	 agencies	 for	 applying	 a	 common	 cap	 on	

discounts	 applicable	 to	 services	 provided	 through	 the	 Eturas	 online	 booking	 platform.	 The	

discount	cap	was	communicated	to	the	agencies	through	an	internal	messaging	system	in	the	

form	 of	 an	 amendment	 to	 the	 platform	 terms	 and	 conditions.	 It	 was	 then	 implemented	 by	

Eturas	using	technical	means
9
.	

Online	 platforms	 may	 facilitate	 an	 unlawful	 cooperation	 between	 platform	 users	 without	

involving	their	direct	contact.	These	examples	may	involve	the	use	of	‘adaptive	algorithms’,	to	

borrow	a	terminology	used	in	E.	Calvano	et	al.	(2018a)
10
.	

The	 greatest	 concerns	 recently	 expressed	 in	 the	 literature	 on	 competition	 law	 and	 policy	

relate:	 (i)	 to	 the	 role	 algorithms	 in	 general	 can	 play	 as	 facilitators	 of	 collusive	 behavior	 in	

repeated	games
11
,	and	 (ii)	 the	 role	 increasingly	sophisticated	algorithms	can	come	to	play	as	

autonomous	implementers	of	pricing	strategies	which,	through	their	strategic	interaction	and	

																																																																																																																																																																																			
all	industry	fare	change	information	and	sends	the	computer	file,	containing	thousands	of	fare	changes,	to	a	list	

of	recipients	that	includes	all	major	airlines	and	the	computer	reservations	systems	operating	in	the	US	–	see	S.	

Borenstein.		
7
		 Ruling	by	the	US	District	Court,	Northern	District	of	California,	San	Francisco	Division,	April	2014.		
8
		 For	this	case	involving	Daniel	Aston,	see	MLex,	26	Feb	2016.	
9
		 See	http://competitionlawblog.kluwercompetitionlaw.com/2017/01/19/eturas-conclusions-platform-collusion/.	

The	authors	of	 this	blog	 rightly	claim	that	«(…)	the	Eturas	decision	demonstrates	how	 information	 technology	

can	distort	markets	in	the	digital	space.»	
10
			 As	described	by	Calvano	et	al.	(2018a),	an	‘adaptive	algorithm’	incorporates	a	model	of	the	market	and	seek	to	

maximize	the	firm’s	profit.	An	example	is	provided	by	‘dynamic	pricing	for	revenue	management’,	used	in	hotel	

booking	and	airline	services.	It	may	estimate	market	demand	using	data	on	sold	quantities	and	prices,	and	then	

will	estimate	the	optimal	price	given	the	estimated	demand	and	the	firm’s	rivals	past	behavior	(prices	charged,	

etc).		
11
		 See	Mehra	(2016)	for	a	thorough	discussion	of	the	role	played	by	“robo-sellers”.	The	author	adds	that	«The	rise	

of	the	robo-seller	exacerbates	antitrust	law’s	longstanding	weakness	at	addressing	social	harm	from	oligopoly.	

Black-letter	law’s	blind	spot	when	it	comes	to	independent	price	coordination—that	is,	without	overt	acts	such	

as	 communication	 or	 the	 adoption	 of	 facilitating	 practices—may	 become	 a	 cloaking	 device	 behind	 which	

algorithmic	 price	 coordination	 can	 readily	 hide.	 Additionally,	 the	 challenges	 that	 face	 explicit	 collusion	 by	

oligopolists	may	become	easier	to	surmount	with	mass	data	collection	and	algorithmic	assistance.»	I	believe	this	

assertion	 calls	 for	 further	work.	As	 stated	by	McSweeny	 (2017),	«We	have	a	 lot	 to	 learn	about	 the	effects	of	

pricing	algorithms	and	AI.	Further	research	will	contribute	to	better	and	more	effective	competition	enforcement	

in	this	area.»	
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their	 access	 to	 large	 data	 sets	 (made	 up	 of	 market	 information	 on	 prices,	 sales,	 and	 other	

relevant	variables	for	the	definition	and	implementation	of	pricing	strategies),	become	capable	

of	adapting	over	time	and	of	learning	to	collude	without	any	explicit	 instructions	provided	by	

human	 agents
12
	
13
.	 In	 particular,	 it	 is	 recognized	 that	 the	 use	 of	 ‘learning	 algorithms’	 can	

facilitate	tacit	collusion	and	lead	to	an	increased	blurring	of	borders	between	tacit	and	explicit	

collusion
14
,	 as	 they	 are	 not	 programmed	 with	 the	 intent	 of	 converging	 to	 a	 collusive	

equilibrium	outcome	but	can	reach	it	through	learning	and	intelligent	adaptation
15
.	Moreover,	

their	 choices,	 namely	 of	 pricing	 strategies,	 and	 subsequent	 implementation,	 would	 be	

unencumbered	 by	 moral	 and	 ethical	 considerations	 and	 constraints,	 or	 other	 human	

behavioral	 “biases”,	 unlike	 the	 case	 with	 human	 economic	 agents
16
.	 In	 this	 sense,	 the	

evolution	 of	 artificial	 intelligence	 is	 bringing	 once	 more	 to	 the	 fore	 the	 persistently	

controversial	distinction	between	tacit	and	explicit	collusion.	A	distinction	that	may	be	of	little	

consequence	in	economic	theory	but	is	hugely	relevant	in	competition	law	and	policy
17
.	

At	 least	part	of	 the	competition	 law	and	economics	community	 recognizes	 this	 challenge,	 to	

the	point	of	questioning	whether	 the	existing	antitrust	 regimes	across	many	 jurisdictions	are	

																																																													
12
		 Competition	 issues	 raised	by	 this	 type	of	 algorithms	have	been	 analyzed	by	 Ezrachi	&	 Stucke	 (2015),	 namely	

under	the	categories	of	collusion	they	call	“Predictable	Agent”	and	“Autonomous	Machine”.		
13
		 Quoting	the	OECD	Report	(2017)	«Artificial	intelligence	[AI]	refers	to	the	broad	branch	of	computer	science	that	

studies	and	designs	intelligent	agents,	who	should	be	able	to	carry	out	tasks	of	significant	difficulty	in	a	way	that	

is	perceived	as	“intelligent”.	 (…)	At	 the	 initial	 stages	of	AI,	machines	were	programmed	with	extensive	 lists	of	

detailed	 rules	 in	 order	 to	 attempt	 to	 replicate	 human	 thoughts,	 which	 could	 easily	 become	 a	 burdensome	

process.	AI	became	a	more	effective	tool	after	the	development	of	algorithms	that	teach	machines	to	learn,	an	

idea	that	evolved	from	the	study	of	pattern	recognition	and	learning	theory,	and	which	would	establish	the	new	

branch	of	machine	learning.	Machine	learning	(ML)	is	a	subfield	of	AI	which	designs	intelligent	machines	through	

the	use	of	algorithms	that	iteratively	learn	from	data	and	experience.	(…)	machine	learning	gives	“computers	the	

ability	to	learn	without	being	explicitly	programmed”.	Machine	learning	algorithms	can	be	classified	into	three	

broad	categories,	depending	on	 their	 learning	pattern	 (Anitha	et	al.,	2014):	 (i)	 Supervised	 learning,	where	 the	

algorithm	uses	a	sample	of	labelled	data	to	learn	a	general	rule	that	maps	inputs	to	outputs;	(ii)	Unsupervised	

learning,	 where	 the	 algorithm	 attempts	 to	 identify	 hidden	 structures	 and	 patterns	 from	 unlabeled	 data;	 (iii)	

Reinforcement	 learning,	 where	 the	 algorithm	 performs	 a	 task	 in	 a	 dynamic	 environment,	 such	 as	 driving	 a	

vehicle	or	playing	a	game	(…)	and	learns	through	trial	and	error.»	
14
		 Following	 OECD	 (2017):	 «Economists	 usually	 distinguish	 between	 two	 forms	 of	 collusion,	 explicit	 and	 tacit.	

Explicit	collusion	refers	to	anti-competitive	conducts	that	are	maintained	with	explicit	agreements,	whether	they	

are	written	or	oral.	The	most	direct	way	for	firms	to	achieve	an	explicit	collusive	outcome	is	to	interact	directly	

and	 agree	 on	 the	 optimal	 level	 of	 price	 or	 output.	 Tacit	 collusion,	 on	 the	 contrary,	 refers	 to	 forms	 of	 anti-

competitive	 co-ordination	 which	 can	 be	 achieved	 without	 any	 need	 for	 an	 explicit	 agreement,	 but	 which	

competitors	are	able	to	maintain	by	recognizing	their	mutual	interdependence.	In	a	tacitly	collusive	context,	the	

non-competitive	 outcome	 is	 achieved	 by	 each	 participant	 deciding	 its	 own	 profit-maximizing	 strategy	

independently	 of	 its	 competitors.	 (…)	 Contrary	 to	 the	 economic	 approach,	which	 considers	 collusion	 a	market	

outcome,	the	legal	approach	focuses	on	the	means	used	by	competitors	to	achieve	such	a	collusive	outcome.	For	

this	 reason,	 competition	 laws	 generally	 do	 not	 prohibit	 collusion	 as	 such,	 but	 prohibit	 anti-competitive	

agreements.	If	collusion	is	the	result	of	such	as	agreement	then	an	infringement	of	the	law	can	be	successfully	

established.	 Although	 there	 is	 great	 variance	 in	 how	 jurisdictions	 interpret	 the	 notion	 of	 agreement,	 they	

traditionally	 require	 some	 sort	 of	 proof	 of	 direct	 or	 indirect	 contact	 showing	 that	 firms	 have	 not	 acted	

independently	 from	 each	 other	 (the	 so-called	 “meeting	 of	 the	 minds”).»	 For	 an	 economic	 analysis	 of	 ‘tacit	

collusion’,	see	Ivaldi	et	al.	(2003).	See	also	Kaplow	(2011).	
15
		 See	T.	Klein	(2018)	for	an	example	of	how	autonomous	‘Q-learning	algorithms’	are	able	to	achieve	supra-

competitive	profits	in	a	stylized	oligopoly	environment	with	sequential	price	competition.	See	also	Calvano	et	al.	

(2018a).			
16
		 Unless	and	until	algorithms	may	be	so	sophisticated	as	to	take	into	account	ethical	and	moral	considerations.	In	

any	case,	it	is	certainly	already	possible	to	program	algorithms	to	take	into	consideration	certain	simple	ethical	

rules	such	as	“split	the	gain	in	half”.	
17
		 See	e.g.,	Kaplow	(2011).	
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capable	to	meet	it
18
.	For	example,	it	has	been	pointed	out	that	antitrust	legislation	was	drafted	

having	 human	 agents	 in	 mind.	 Concepts	 such	 as	 “meeting	 of	 the	 minds”,	 “mutual	

understanding”,	“mutual	assent”,	“concurrence	of	wills”
19
,	can	hardly	be	applied	to	the	case	of	

autonomous	 artificial	 agents
20
,	 if	 they	 cannot	 be	 regarded	 as	 mere	 tools	 used	 by	 firms	

(otherwise	 firms	 would	 undoubtedly	 remain	 liable	 for	 their	 own	 collusive	 behavior),	 but	

behave	as	truly	autonomous	agents
21
.	As	pointed	out	by	McSweeny	(2017),	«Concerns	about	

algorithmic	 tacit	 collusion	 are	 still	 largely	 theoretical	 at	 this	 point.	 Nonetheless,	 recent	

examples	suggest	that	the	concern	is	not	fanciful.»	

The	challenge	goes	beyond	liability.	For	example,	the	EU	can	assert	that	«(…)	companies	should	

ultimately	 be	 held	 responsible	 for	 the	 activities	 of	 any	 algorithm	 or	 pricing	 software	 they	

deploy»,	and	that	«like	an	employee	or	an	outside	consultant	working	under	a	firm’s	‘direction	

or	control,’	an	algorithm	remains	under	the	firm’s	control,	and	therefore	the	firm	is	liable	for	its	

actions.»
22
	But	that	does	not	prevent	that	the	use	of	increasingly	sophisticated	algorithms	will	

make	collusion	more	difficult	to	detect	and	prosecute,	even	if	the	design	and	use	of	algorithms	

may	 be	 regarded	 as	 a	 ‘plus	 factor’	 to	 ‘an	 agreement’	 between	 firms	 employing	 such	

algorithms
23
.	

	

II. Algorithmic	Collusion	

The	 use	 of	 algorithms	 in	 game	 theory	 goes	 a	 long	way	 back.	 In	 particular,	 several	 authors
24
	

have	 analyzed	 the	 play	 of	 non-cooperative	 games	 and	 their	 equilibria	when	 finite	 automata	

play	the	game	as	models	of	rational	players	with	limited	memory	and	reasoning	capacity.	Such	

																																																													
18			

	 As	referred	by	Kroll	et	al.	(2017):	«	(…)	the	accountability	mechanisms	and	legal	standards	that	govern	decision	

processes	 have	 not	 kept	 pace	with	 technology.	 The	 tools	 currently	 available	 to	 policymakers,	 legislators,	 and	

courts	 were	 developed	 primarily	 to	 oversee	 human	 decision	 makers.	 Many	 observers	 have	 argued	 that	 our	

current	 frameworks	 are	 not	well-adapted	 for	 situations	 in	which	 a	 potentially	 incorrect,	 unjustified,	 or	 unfair	

outcome	emerges	from	a	computer.	»	-	p.	636.	However,	in	a	recent	intervention,	M.	Ohlhausen	(2017),	Acting	

Chairman,	 U.S.	 Federal	 Trade	 Commission,	 stated	 that	 from	 an	 antitrust	 perspective,	 the	 expanding	 use	 of	

algorithms	 raises	 familiar	 issues	 that	 are	well	 within	 the	 existing	 canon	 (i.e.,	 within	 the	 existing	 competition	

legislation	and	policy).		
19
		 See	e.g.,	Kaplow	(2011)	for	an	analysis	of	some	of	these	concepts	and	others,	such	as	‘conspiracy’,	 ‘collusion’,	

‘parallelism’,	and	‘conscious	parallelism’.	Behind	the	concept	of	“meeting	of	the	minds”	is,	or	at	least	seems	to	

be,	 the	 well-defined	 concept	 of	 “common	 knowledge”	 in	 game	 theory.	 About	 this	 latter	 concept,	 see	 e.g.,	

Fudenberg	&	Tirole	(1991).	See	Aumann	(1976)	for	a	mathematical	definition	of	“common	knowledge”,	starting	

with	some	probability	space	on	the	“states	of	the	world”,	and	using	the	topological	notions	of	join	and	meet	of	

sets.	See	also	Lewis	(2002)	for	a	more	philosophical	discussion	of	this	concept.	
20
		 The	term	‘Autonomous	Artificial	Agent’	is	used	by	Harrington	and	is	defined	as	‘a	software	program	that	carries	

out	a	set	of	operations	on	behalf	of	a	human	agent	without	intervention	by	this	agent,	and	does	so	with	some	

knowledge	of	the	human	agent’s	objective’	–	see	Harrington	(2018),	p.	7.	
21
		 See	e.g.,	Mehra	(2016),	and	Harrington	(2018).	

22
		 See	M.	Vestager	(2017).	

23
		 See	 Gal	 &	 Elkin-Koren	 (2017),	 pp.	 346/7,	 albeit	 these	 two	 authors	 discuss	 ‘plus	 factors’	 in	 the	 context	 of	

consumer	 algorithms.	 See	 also	 Gal	 (2018),	 p.	 37.	 A	 ‘plus	 factor’	 is	 to	 be	 understood	 as	 additional	 economic	

circumstantial	 evidence	 that,	 together	 with	 parallel	 conduct	 by	 different	 firms,	 e.g.,	 a	 parallel	 movement	 in	

prices,	 can	merit	 an	 investigation	 under	 antitrust	 legislation	 –	 see	 Kovacic	 et	 al.	 (2011).	 Such	 investigation	 is	

merited	when	all	alternative	explanations	for	such	parallel	movement,	but	for	some	sort	of	agreement	between	

firms,	are	non-credible.	
24
		 See	Rubinstein	(1986,	1998),	Gilboa	(1988),	and	Kalai	(1990),	among	other	authors.	See	also	Conlisk	(1996).	
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capacity	 can	be	measured	by	 the	number	of	 states	 in	 each	 finite	 automaton
25
.	 The	 study	of	

algorithms	as	collusive	devices	has	been	somewhat	more	recent
26
.	

In	a	 recent	paper,	 Salcedo	 (2015)	explores	a	 symmetric	dynamic	model	of	price	 competition	

with	 two	firms,	where	 firms	choose	pricing	algorithms	 (henceforth,	PA’s)	 simultaneously	and	

independently	at	the	beginning	of	the	repeated	game.	He	shows	that	when	four	conditions	are	

met	simultaneously,	namely,	 firms	set	prices	 through	algorithms	that	can	respond	to	market	

conditions,	these	algorithms	are	fixed	in	the	short	run,	can	be	decoded	by	the	rival,	and	can	be	

revised	over	time,	then	every	equilibrium	of	the	game	leads	in	the	long	run	to	monopolistic,	or	

collusive,	profits.	He	claims	his	 findings	provide	theoretical	 support	 for	 the	 idea	that	optimal	

use	of	PAs	is	an	effective	tool	for	tacit	collusion	and	that	the	similar	results	will	be	attained	in	

the	context	of	general	repeated	games	and	not	just	a	pricing	duopoly.	

In	another	recent	paper,	T.	Klein	(2018)	shows	how	in	a	stylized	duopoly	environment	with	a	

homogeneous	 good,	 unrestricted	 production	 capacity,	 and	 with	 repeated	 sequential	 price	

competition,	independent	‘Q-learning	algorithms’	are	able	to	achieve	higher-than	static	prices	

and	profits.	According	to	the	author,	his	result	provides	ground	for	competition	authorities	and	

regulators	to	remain	vigilant	when	observing	the	rise	of	autonomous	PAs	in	the	marketplace,	

in	particular	 in	cases	where	firms	may	be	short-run	price	committed.	He	also	claims	that	the	

general	 framework	used	 in	 the	paper	may	be	used	 to	 similarly	 assess	 the	 capacity	 of	 other,	

perhaps	more	advanced	algorithms	to	collude	in	various	environments.		

In	 another	 paper,	 Calvano	 et	 al.	 (2018a)	 put	 forth	 five	 important	 questions,	 namely:	 (i)	 Can	

“smart”	 PAs	 learn	 to	 collude?	 (ii)	 Is	 collusion	 among	 algorithms	 any	different	 from	 collusion	

among	humans?	(iii)	In	particular,	is	algorithmic	pricing	conducive	to	collusion	more	often	than	

what	humans	could	do?	 If	 the	answers	 to	 these	questions	are	affirmative,	 further	 issues	will	

arise:	 (iv)	 How	 can	 we	 detect	 algorithmic	 collusion?	 (v)	 What	 are	 the	 appropriate	 new	

standards	for	competition	policy?	

In	my	paper	I	deal	with	questions	(iv)	e	(v).	If	the	answer	to	questions	(i)	and	(ii)	is	a	clear	‘no’,	

then	there	is	not	much	to	say	that	has	not	been	said	before.	Hence,	my	paper	is	only	relevant	if	

we	cannot	give	such	a	clear	negative	answer	to	both	questions.		

The	authors	also	distinguish	between	‘adaptive	algorithms’	and	‘learning	algorithms’,	claiming	

that	the	serious	challenges	to	current	competition	legislation	and	policy	come	from	the	latter.	

As	referred	in	their	paper,	and	contrary	to	‘adaptive	algorithms’,	 learning	(pricing)	algorithms	

are	‘active	learners’,	as	they	are	‘willing’	to	adopt	strategies	that	may	be	suboptimal	so	as	to	

learn	from	experience.	A	learning	algorithm	“learns	to	play	optimally	from	experience”,	which	

gives	such	algorithms	an	advantage	over	adaptive	algorithms	in	more	complex	environments.	

This	 also	 allows	 them	 to	 reach	 a	 collusive	 equilibrium	 without	 being	 designed	 to	 do	 so.	

Through	 the	 simulation	 of	 a	 repeated	 game	 played	 by	 two	 ‘Q-learning’	 algorithms,	

representing	 two	 competing	 firms	 playing	 a	 prisoner’s	 dilemma	 game	with	 strategies	 ‘Price	

																																																													
25
		 See	annex	 for	a	 formal	definition	of	 ‘finite	automaton’,	or	Lewis	&	Papadimitriou	 (1981).	The	 finite	automata	

that	implement	pre-defined	repeated	game	strategies	are	‘Moore	machines’,	as	their	output	is	not	necessarily	

binary	 –	 see	 annex.	 There	 are	 ways	 of	 measuring	 the	 complexity	 of	 Moore	 machines	 other	 than	 just	 their	

number	of	states.	E.g.,	the	Moore	machine	implementing	the	“grim	trigger	strategy”	in	the	infinitely	repeated	

prisoner’s	 dilemma	 game	 can	 be	 regarded	 as	 simpler	 than	 the	 one	 implementing	 “tit-for-tat”.	 In	 fact,	 both	

machines	have	two	states	but	the	transition	function	is	simpler	for	the	“grim	trigger”	strategy.	
26
		 See	additional	discussion	in	Schwalbe	(2018).	
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High’	and	Price	Low’	and	with	a	one-period	memory
27
,	 the	authors	show	that	even	if	 it	takes	

some	time	for	Q-learning	algorithms	to	‘realize’	that	collusion	can	be	profitable,	collusion	will	

occur	most	of	the	time,	even	if	some	experimentation	periods	will	occur	when	the	algorithms	

engage	in	a	“price	war”.	

Both	 Klein	 and	 Salcedo	 employ	 in	 their	 work	 ‘Q-learning	 algorithms’.	 These	 algorithms	 are	

examples	of	model-free	active	reinforcement	learning	agents
28
.	They	learn	the	value	of	taking	

a	certain	action	a	 in	a	state	s,	where	this	value,	called	Q-value,	 is	directly	related	to	a	payoff	

U(·),	which	 is	a	 function	of	state	s
29
.	However,	 in	both	papers	 the	very	 large	number	of	 time	

periods	 required	 for	 ‘Q-learning	 algorithms’	 to	 explore	 their	 environment	 and	 learn	 to	

adequately	 balance	 their	 dual	 functions	 of	 ‘exploitation’	 (reaping	 benefits)	 and	 ‘exploration’	

(learning),	is	typically	far	greater	than	the	frequency	with	which	firms	interact	in	most	markets	

and	 carry	 out	 effective	 price	 changes.	 It	 is	 possible	 that	 more	 sophisticated	 algorithms	 can	

learn	 more	 and	 learn	 faster
30
.	 Calvano	 et	 al.	 (2018a)	 discuss	 these	 possibilities	 as	 well,	

including	communication	between	algorithms.	

	

III. ‘Preventing	Algorithmic	Collusion’	

Several	authors	who	have	addressed	the	possibilities	 for	achieving	tacit	collusion	equilibrium	

outcomes	 by	 algorithms	 interacting	 autonomously	 from	 any	 instructions	 by	 human	 agents,	

have	also	opened	the	possibility	for	some	form	of	ex-ante	assessment	and	regulation	over	the	

type	of	algorithms	being	used	by	firms.	As	referred	by	Mehra	(2016),	«Looking	further	into	the	

future,	regulators	may	need	to	develop	the	ability	to	test	and	probe	the	effects	of	algorithmic	

sales	 on	 consumers;	 agencies	 may	 need	 to	 conduct	 their	 own	 ‘algorithmic	 enforcement’»
31
.	

And,	as	already	mentioned,	 to	 regard	 the	use	of	algorithms,	or	 some	types	of	algorithms,	as	

‘plus	factors’	to	‘an	agreement’	between	firms	employing	such	algorithms
32
,	possibly	in	an	ex-

post	evaluation.	

Calvano	et	 al.	 (2018a)	distinguish	 three	possible	policy	 approaches	 to	 the	 risk	of	 algorithmic	

collusion.	 A	 total	 ban	 on	 the	 use	 of	 algorithms	 is	 set	 rightfully	 aside	 is	 an	 unreasonable	

approach.	The	 first	 approach	 takes	 ‘business-as-usual’,	where	algorithmic	pricing	 is	 regarded	

as	not	posing	any	new	problem	 that	 cannot	be	dealt	with	by	 current	antitrust	 legislation.	 In	

particular,	 the	 legal	 distinction	 between	 tacit	 and	 explicit	 collusion	 is	 maintained,	 as	

attempting	to	sanction	tacit	collusion	would	remain	subject	to	unreasonably	high	type	I	and	II	

errors.	 The	 second	 approach	 calls	 for	 an	 ex-ante	 regulation,	 or	 supervision,	 of	 PAs,	 to	 be	

carried	 out	 by	 a	 regulatory	 (or	 competition)	 agency.	 This	 agency	 would	 have	 the	 power	 to	

																																																													
27
		 The	common	time	discount	factor	equals	0.995,	the	learning	rate	equals	0.15,	and	the	experimentation	rate	is	

constant	and	equals	0.04.	
28
		 It	is	worth	mentioning	that	reinforcement	learning	models	have	been	developed	in	game	theory	for	many	years.	

They	attempt	to	model	the	behavior	of	less	than	fully	rational	economic	agents	who	interact	strategically,	and	

where	equilibria,	when	they	exist,	arise	as	long-run	outcomes	of	this	interaction.	Players	learn	to	improve	their	

strategic	choices	as	they	play	the	game	period	after	period	-	see	Fudenberg	&	Levine	(1998).	
29
		 See	Russell	&	Norvig	(2016),	chs.	17	and	21,	for	a	more	extensive	discussion	of	“Q-learning	algorithms”.	

30
		 It	 is	worth	mentioning	 that	 in	 infinitely	 repeated	 (non-cooperative)	games,	 the	computation	of	best-response	

strategies	 may	 not	 be	 trivial,	 and	 can	 be	 quite	 complex	 –	 see	 e.g.,	 Gilboa	 (1988),	 Ben	 Porath	 (1990),	 and	

Papadimitriou	(1992).	
31
		 See	Mehra	(2016),	p.	1331.	

32
		 See	e.g.,	Harrington	(2018);	Calvano	et	al.	(2018a);	Gal	(May	2017,	and	2018);	Mehra	(2016);	Ezrachi	&	Stucke	

(2016);	T.	Klein	(2018).	
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prohibit	certain	PAs	that	exhibited	a	‘tendency	to	collude’,	a	characteristic	that	would	have	to	

be	defined	 in	a	precise	and	 rational	way,	not	 least	 for	 the	sake	of	 legal	 certainty.	As	we	will	

see,	this	second	approach	is	also	favored	by	Harrington	(2018).	The	third	approach	calls	for	an	

ex-post	regulation,	or	control,	the	same	way	competition	agencies	currently	deal	with	antitrust	

practices,	 but	 under	 legal	 standards	 somewhat	 different	 from	 the	 current	 ones
33
.	 Perhaps	

these	 standards	 would	 take	 a	 more	 assertive,	 yet	 careful	 stance	 towards	 ‘tacit	 collusion’.	

Calvano	et	al.	(2018a)	seem	to	favor	this	third	approach,	where	the	legal	distinction	between	

tacit	and	explicit	collusion	would	have	to	be	reassessed.	

Harrington	 (2018)	 draws	 a	 distinction	 between	 the	 current	 legal	 doctrine	 on	 collusion	 by	

human	agents	and	the	situation	where	prices	are	set	by	autonomous	artificial	agents	(AAs)
34
.	

In	 this	 latter	 case,	 the	 strategy	 determining	 the	 price	 to	 be	 charged	 is	 written	 down	 in	 the	

algorithm’s	code	which	means	that	it	can,	in	principle,	be	accessed,	contrary	to	the	mind	of	a	

colluding	 manager.	 Based	 on	 this	 crucial	 distinction,	 this	 author	 proposes	 that	 liability	 be	

defined	by	a	per	se	prohibition	of	certain	PAs	that	support	supra-competitive	prices,	so	as	to	

make	collusion	by	AAs	unlawful.	Liability	would	be	determined	by	an	examination	of	a	pricing	

algorithm’s	(PA)	code	to	determine	whether	it	is	a	prohibited	PA,	or	by	entering	data	into	the	

PA	and	monitoring	the	output	in	terms	of	prices	to	determine	whether	the	algorithm	exhibits	a	

prohibited	 property
35
.	 As	 stated,	 ideally	 the	 liability	 rule	 would	 prohibit	 all	 algorithms	 that	

promote	 collusion,	 and	 would	 exclude	 from	 such	 prohibition	 all	 algorithms	 that	 promote	

efficiency
36
.	I.e.,	an	ideal	liability	rule	would	allow	the	decision	maker	not	to	commit	errors	of	

type	I	and	type	II.	A	realistic	alternative	would	be	to	design	or	choose	a	liability	rule	that	would	

allow	 for	 the	 maximization	 of	 Likelihood	 Ratio	 𝐿𝑅(𝑃𝑃𝐴) ≝ (1 − 𝑃𝑟𝑜𝑏[𝑒𝑟𝑟𝑜𝑟 𝑡𝑦𝑝𝑒 𝐼𝐼]) ÷

 𝑃𝑟𝑜𝑏[𝑒𝑟𝑟𝑜𝑟 𝑡𝑦𝑝𝑒 𝐼]
37
.	Harrington	proceeds	by	drawing	a	broad	outline	of	a	three-step	research	

program	to	identify	which	PAs	will	be	prohibited,	as	follows:	

Step	1:	(1.i)	Create	a	simulated	market	setting	with	learning	algorithms	that	produce	collusion	

and	competition	as	outcomes;	(1.ii)	Keep	track	of	when	competitive	prices	emerge	and	when	

supra-competitive	 prices	 emerge;	 (1.iii)	 Perform	 this	 exercise	 with	 different	 learning	

algorithms	and	for	a	variety	of	market	conditions.	

																																																													
33
		 See	Calvano	et	al.	(2018a),	pp.	14/15.	

34
		 In	Harrington,	an	AA	 is	composed	of	 two	elements:	a	 ‘pricing	algorithm’	 that	prescribes	what	price	 to	charge	

depending	on	the	history	of	 the	 (repeated)	game	played	by	 the	various	 firms	competing	 in	 the	same	market;	

and	 a	 ‘learning	 algorithm’	 that	 chooses	 and	 modifies	 the	 pricing	 algorithm	 based	 on	 a	 pricing	 algorithm’s	

performance	 relative	 to	 the	 performance	 of	 other	 pricing	 algorithms.	When	 the	 co-domain,	 or	 at	 least	 the	

range,	of	a	strategy	in	a	game	has	more	than	two	elements,	then	a	FA	implementing	it	 is	a	Moore	machine,	a	

generalization	of	the	basic	FA	–	see	annex	for	a	definition	of	a	Moore	machine.	
35
		 See	‘white-box	settings’	and	‘black-box	settings’	in	Desai	&	Kroll	(2018).		

36
		 Following	Harrington	(2018),	 let	pa	denote	a	"pricing	algorithm"	and	PPA	denote	the	set	of	prohibited	pricing	

algorithms.	 Given	 a	 specification	 of	 PPA,	 Prob	 [pa	 ∈ PPA|pa	 is	 collusive]	 is	 the	 probability	 that	 a	 pricing	

algorithm	is	determined	to	be	in	the	prohibited	set	when	the	pricing	algorithm	is	collusive.	Prob	[pa	∈ PPA	|pa	is	

competitive]	 is	 the	 probability	 that	 a	 pricing	 algorithm	 is	 determined	 to	 be	 in	 the	 prohibited	 set	 when	 the	

pricing	 algorithm	 is	 competitive.	 Ideally,	 Prob	 [pa	 ∈ PPA|pa	 is	 collusive]	 =	 1	 and	 Prob	 [pa	 ∈ PPA	 |pa	 is	

competitive]	 =	 0	 so	 that	 a	 pricing	 algorithm	 is	 concluded	 to	 be	 unlawful	 if	 and	 only	 if	 it	 is	 collusive.	 That	 is,	

ideally,	errors	type	I	and	type	II	would	be	zero.	That	such	an	ideal	is	not	reached	will	be	due	to	misspecification	

of	set	PPA	-	some	collusive	pricing	algorithms	are	excluded	from	PPA	or	some	competitive	pricing	algorithms	are	

included	-	or	incomplete	data	or	inadequate	methods	for	evaluating	whether	a	particular	pricing	algorithm	is	in	

PPA.	
37
		 Where	 1 − 𝑃𝑟𝑜𝑏 𝑒𝑟𝑟𝑜𝑟 𝑡𝑦𝑝𝑒 𝐼𝐼 = 1 − 𝑃𝑟𝑜𝑏 𝑝𝑎 ∉  𝑃𝑃𝐴 𝑝𝑎 is collusive ,	and	𝑃𝑟𝑜𝑏 𝑒𝑟𝑟𝑜𝑟 𝑡𝑦𝑝𝑒 𝐼 =

𝑃𝑟𝑜𝑏 𝑝𝑎 ∈  𝑃𝑃𝐴 𝑝𝑎 is competitive , and	where	𝑃𝑃𝐴	denotes	the	collection	of	prohibited	pricing	algorithms.	
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Step	2:	(2.i)	Inspect	or	test	the	resulting	pricing	algorithms	for	the	purpose	of	identifying	those	

properties	that	are	present	when	supra-competitive	prices	emerge	but	are	not	present	when	

competitive	 prices	 emerge,	 (2.ii)	 Pricing	 algorithms	 with	 those	 properties	 will	 have	 a	 high	

likelihood	ratio	and	thus	be	a	candidate	for	the	set	of	prohibited	pricing	algorithms.	

Step	 3:	 Test	 the	 effect	 of	 prohibiting	 a	 set	 of	 pricing	 algorithms.	 This	would	 be	 done	 by	 re-

running	 the	 learning	 algorithms	 in	 the	 simulated	 market	 setting	 but	 where	 the	 learning	

algorithms	are	constrained	not	to	select	pricing	algorithms	in	the	prohibited	set.	The	aim	is	to	

test	whether	 supra-competitive	prices	are	 less	 frequently	 set	and	competitive	prices	are	not	

distorted.	If	so,	then	the	prohibition	of	some	pricing	algorithms	would	make	lower	prices	more	

frequent,	with	a	corresponding	increase	in	social	welfare.	

Harrington’s	three	step	research	program	can	be	applied	both	ex-ante	as	well	as	ex-post,	 i.e.,	

as	 a	 prevention	 tool	 or	 a	 sanctioning	 tool.	 Nevertheless,	 its	 wording	 suggests	 an	 ex-ante	

approach.	 Clearly,	 this	 research	 program	 can	 be	 carried	 out	 for	 some	 subset	 of	 all	 possible	

inputs	 that	 can	 be	 fed	 into	 the	 different	 algorithms.	 But	 this	 subset	 can	 be	 smaller	 than	

necessary.	This	can	be	a	serious	limitation	to	the	efficacy	of	such	research	program.	

Other	 authors	 have	 similarly	 called	 for	 some	 sort	 of	 regulation,	 assessment	 or	 auditing	 of	

algorithms	as	a	way	to	prevent	or	sanction	‘algorithmic	collusion’
38
.	

We	 can	 then	 pose	 the	 following	 questions:	 Do	 these	 approaches	 define	 the	 way	 forward?	

More	 generally,	 can	 competition	 and/or	 regulatory	 agencies	 rise	 to	 the	 challenge	 M.	 Gal	

encapsulates	 when	 she	 recommends	 that	 “’smart	 coordination’	 by	 suppliers	 requires	 ‘smart	

regulation’”?
39
	 What	 type	 of	 regulation?	 And	 how	 smart	 can	 regulation	 be?	 The	 next	 two	

sections	will	explore	this	challenge,	by	appealing	to	recent	literature	on	algorithms	and	the	law	

and	to	the	theory	of	computation.		

	

IV. Ex-ante	regulation,	self-regulation	and	their	limits		

Given	 the	multiplicity	of	algorithms	 firms	can	employ	 to	 implement	pricing	strategies,	an	ex-

ante	 regulatory	 agency	 would	 be	 truly	 effective	 only	 if,	 when	 given	 any	 set/vector	 of	

algorithms,	 one	 or	more	 per	 firm,	 it	 could	 ascertain	whether	 they	 exhibited	 a	 “tendency	 to	

collude”,	 and	 if	 yes	 then	 prohibit	 their	 use.	 Apart	 from	 the	 existence	 of	 limits	 to	 such	

ascertainment,	 as	 we	 will	 see	 below,	 the	 property	 “tendency	 to	 collude”	must	 be	 properly	

defined.	 For	 Harrington	 (2018)	 it	 means	 choosing	 PA’s	 that	 through	 their	 interaction,	

eventually	 result	 in	 supra-competitive	 prices.	 According	 to	 this	 author,	 the	 Finite	 Automata	

(FA’s)	 implementing	 the	 ‘tit-for-tat’	 strategy	 or	 the	 ‘grim	 trigger’	 strategy	 are	 good	 PA	

candidates	 to	 fulfill	 such	 property
40
.	 The	 regulatory	 agency	 would	 need	 to	 define	 its	 own	

understanding	in	a	clear	and	transparent	way	to	minimize	legal	uncertainty	and	the	probability	

of	committing	errors	types	I	and	II,	through	the	collection	of	as	much	relevant	information	as	

possible.		

																																																													
38
		 See	 Calvano	 et	 al.	 (2018a),	 pp.	 14-16;	 Gal	 (May	 2017)	 p.	 6,	 through	 the	 creation	 of	 an	 “internal	 algorithmic	

police”;	Mehra	(2016),	Part	IV;	Ezrachi	&	Stucke	(2016),	p.	21;	Gal	(2018),	p.	39;	T.	Klein	(2018),	p.	14.	See	also	

Schwalbe	(2018),	pp.	21-23.	
39
		 See	Gal	(2018),	p.	25.	

40
		 Note	that	in	Harrington	(2018),	the	prohibition	is	applied	to	PAs,	not	to	learning	algorithms	themselves.	
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Pricing	 algorithms	 themselves	 can	 become	 quite	 complex.	 Consider	 the	 infinitely	 repeated	

prisoner’s	 dilemma	 game	 (IRPD)	 as	 the	 paradigm	 for	 the	 strategic	 interaction	 between	 two	

potentially	colluding	firms	in	a	market.	The	‘tit-for-tat’	strategy	can	be	implemented	by	a	very	

simple	FA	with	two	states	and	a	straightforward	transition	function.	The	‘grim	trigger’	strategy	

is	also	 implementable	by	a	FA	with	 two	states	and	an	even	simpler	 transition	 function.	Both	

these	 strategies	 played	 by	 both	 players	 in	 the	 IRPD	 game	 can	 support	 (price)	 collusion	 as	 a	

subgame	perfect	equilibrium,	provided	certain	conditions	are	satisfied.	Similar	strategies	in	an	

oligopoly	 game	with	more	 than	 two	players	 can	 also	 support	 (price)	 collusion	 as	 a	 subgame	

perfect	equilibrium,	under	certain	conditions.	But	so	can	infinitely	denumerable
41
	many	other	

vectors	of	more	complex	strategies,	implementable	by	FA,	with	more	states	and	more	complex	

transition	functions.	

The	regulatory	agency	could	also	attempt	to	identify	families	of	‘learning	algorithms’	(typically,	

one	 learning	 algorithm	 per	 firm)	 such	 that	 when	 they	 play	 an	 infinitely	 repeated	 oligopoly	

game,	they	will	eventually	learn	to	collude.	Each	of	these	algorithms	receives	as	input	in	each	

period	publicly	 available	 relevant	market	 data,	 such	 as	 prices	 charged	by	 the	different	 firms	

(through	 PAs)	 which,	 together	 with	 information	 on	 its	 own	 firm’s	 costs,	 profit	 levels,	 and	

possibly	 other	 types	 of	 data,	 will	 choose	 a	 PA	 to	 be	 applied	 for	 a	 certain	 number	 of	 time	

periods.	 Whether	 each	 ‘learning	 algorithm’	 will	 eventually	 learn	 to	 decode	 other	 ‘learning	

algorithms’	in	the	repeated	game,	even	if	only	partially	so,	might	also	become	possible.	

An	ever-increasing	complexity	of	algorithms	employed	by	firms	would	pose	a	serious	challenge	

to	 the	 regulatory	 agency.	 Prohibited	 algorithms	 could	 be	 replaced	 by	 new	 ones	 that	 could	

either	 escape	 an	 ex-ante	 assessment	 altogether	 -	 depending	 on	 how	 easily	 any	 such	

prohibition	could	be	circumvented	-	or,	 if	not,	burden	yet	again	the	regulatory	agency,	which	

would	be	pressed	 to	decide	 in	 a	 timely	 fashion,	 lest	 it	 delay	 the	use	of	 efficiency	enhancing	

algorithms.	

It	 seems	reasonable	 then	 to	ask	what	kind	of	 regulatory	agency	would	have	 the	 information	

and	 knowledge	 required	 to	 ascertain	 the	 properties	 of	 ever	 evolving	 sets	 of	 algorithms	

submitted	for	its	evaluation,	while	at	the	same	time	controlling	for	errors	type	I	and	II	
42
.	

In	 face	 of	 such	 a	 demanding	 task,	 could	 this	 regulatory	 agency	 itself	 employ	 a	 “meta-

algorithm”	that	could	do	the	job,	i.e.,	accept	or	reject	any	set	of	algorithms	under	submission,	

once	 the	criteria	 for	prohibition	 is	 clearly	defined?	Not	only	would	 such	a	 “meta-algorithm”,	

still	 being	 an	 algorithm,	 never	 commit	 type	 I	 and	 II	 errors	 -	 these	 could	 only	 come	 from	 ill-

defined	 prohibition	 criteria	 -,	 but	 its	 computational	 capabilities	 could	 surpass	 any	 human	

regulator’s	computational	capabilities,	unless	one	is	prepared	to	boldly	assert	otherwise,	as	it	

could	question	the	validity	of	the	‘Church-Turing	Thesis’,	discussed	below.	

If	we	accept	 the	Church-Turing	Thesis
43
,	which	 states	 that	Turing	Machines	 (TMs)	are	 formal	

versions	of	algorithms,	and	that	no	computational	procedure	can	be	considered	an	algorithm	

																																																													
41
		 When	applied	to	a	set,	the	term	“infinitely	denumerable”,	which	is	equivalent	to	the	term	“infinitely	countable”,	

means	that	the	cardinality	of	that	set	equals	the	cardinality	of	the	set	ℕ	of	natural	numbers.	In	contrast,	the	set	

ℝ	of	all	real	numbers	is	uncountable.	
42
		 Maybe	competition	agencies	would	consider	useful	to	 issue	of	guidelines	on	the	use	of	algorithms	by	firms	 in	

the	 market,	 along	 the	 lines	 of	 what	 happens	 with	 the	 application	 of	 Article	 101(3)	 of	 TFEU,	 where	 ‘block	

exemptions’	were	created,	or	with	the	notion	of	‘hard	core	restrictions’,	such	as	RPM,	as	included	in	the	2010	

EC	guidelines	on	vertical	restrictions	(EC	Guidelines	on	Vertical	Restrictions,	OJEU	C130/01,	19.05.2010).	
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unless	it	can	be	presented	as	a	TM,	then,	such	“meta-algorithm”	would	be	a	TM,	as	are	all	the	

algorithms	 we	 have	 been	 talking	 about.	 And	 it	 would	 represent	 an	 upper	 bound	 to	 the	

computational	capabilities	of	any	human	regulator,	endowing	the	regulator	with	the	means	to	

perform	 its	 job.	 This	 job	 could	 be	 extended	 to	 allow	 the	 characterization	 of	 a	 particular	

algorithm,	or	set	of	algorithms,	as	“plus	factor(s)”	to	‘an	agreement’	between	firms	employing	

such	algorithms.	

Since	‘algorithmic	collusion’	 is	a	possible	outcome	from	the	interaction	of	several	algorithms,	

typically	 one	 per	 firm,	 that	 the	 regulator	 wants	 to	 prevent,	 the	 meta-algorithm	 would	 be	

simulating	 their	 interaction	 for	 any	 given	 data	 set	 that	 includes	 prices,	 costs	 and	 other	

information	 relevant	 for	 the	 pursuit	 of	 the	 firms’	 ultimate	 goals.	 In	 other	words,	 this	meta-

algorithm	is	best	interpreted	as	a	Universal	Turing	Machine	(UTM)
44
.	

Having	reached	this	point	we	are	confronted	with	the	following:	

Result	1:	There	is	no	such	meta-algorithm	which,	when	presented	with	a	set	of	algorithms,	one	

per	firm,	together	with	any	data	set,	suitably	encoded,	is	able	to	decide	whether	they	belong	to	

the	set	of	algorithms	that	should	be	prohibited.	[A	line	of	proof	for	this	result	is	given	in	annex	

1]	

In	 other	 words,	 the	 “ex-ante	 algorithmic	 assessment	 problem”,	 as	 characterized	 above,	 is	

unsolvable
45
.	 I	believe	 that	 this	 result	 sets	a	 limit	on	how	“smart”	and	“transparent”	ex-ante	

regulation	of	PAs	can	be,	and	casts	some	doubt	over	the	efficacy	of	such	regulation.	

In	 contrast	 with	 Harrington	 (2018),	 I	 am	 redefining	 the	 class	 of	 algorithms	 that	 may	 be	

prohibited	per	se	as	learning	algorithms	and	not	PAs.	In	Harrington’s	set	up	‘PAs’	are	chosen	by	

‘learning	algorithms’	as	 the	 infinitely	 repeated	oligopoly	game	under	analysis	unfolds.	 In	any	

case,	all	these	different	types	of	algorithms	can	be	interpreted	as	Turing	Machines.	Therefore,	

the	above	result	still	would	apply.	

Note	that	this	result	does	not	say	that	for	any	given	algorithm	or	set	of	algorithms	there	does	

not	exist	a	“meta-algorithm”	that	is	able	to	decide	whether	they	should	be	prohibited	or	not.	

What	it	says	is	that	there	is	no	‘meta-algorithm’	that	can	decide	whether	or	not	any	algorithm	

or	 set	of	 algorithms	 should	be	prohibited
46
.	 Therefore,	 a	 certain	meta-algorithm	may	do	 the	

job	for	a	particular	algorithm	or	set	of	algorithms	but	may	be	unable	to	do	the	job	for	another	

																																																																																																																																																																																			
43
		 See	Lewis	&	Papadimitriou	(1981)	for	a	presentation	of	this	thesis	or	conjecture.	See	also	“Church’s	Thesis”	 in	

Davis	&	Weyuker	 (1983).	 Sometimes,	 the	 ‘Church-Turing	Thesis’	 is	presented	as	 follows:	The	Universal	Turing	

Machine	 can	 perform	 any	 calculation	 that	 any	 ‘human	 computer’	 can	 carry	 out.	 By	 ‘human	 computer’	 one	

means	a	human	being	using	his/her	own	mind	and	any	other	tools	to	perform	any	type	of	computation.	Note	

that	 this	 ‘Church-Turing	 Thesis’	 is	 not	 presented	 as	 a	 theorem,	 as	 it	 is	 not	 a	mathematical	 result.	 It	may	 be	

disproved	in	the	future.	However,	according	to	most	scholars	that	is	quite	unlikely	to	happen.	
44
		 See	annex	for	a	definition	of	a	UTM.	

45
		 Desai	&	Kroll	(2018)	refer	in	their	paper	that	the	‘Halting	problem’	–	see	annex	for	a	description	of	this	problem	

-	which	is	a	well-known	unsolvable	problem	in	the	theory	of	computation,	implies	that	several	other	interesting	

problems	 are	 also	 unsolvable.	 And	 that	 these	 inherent	 limits	 to	 solvability	 indicate	 that	 «insofar	 as	 law	 and	

policy	 seeks	 a	 general	 transparency	 tool	 that	 analyzes	 all	 disclosed	 algorithms	 for	 compliance	 with	 desired	

norms,	such	a	tool	will	not	be	possible».	See	also	Kroll	et	al.	(2017).	Note	that	Rice’s	Theorem	(1953),	which	I	use	

to	 prove	 the	 above	 result	 –	 see	 annex	 -	 generalizes	 the	 theorem	 that	 states	 the	 insolvability	 of	 the	 ‘Halting	

problem’	(due	to	Alan	Turing,	1936-7)	–	see	Rogers	(1987),	p.	34.	I	used	Rice’s	Theorem	in	another	context	more	

than	twenty	years	ago	–	see	Gata	(1995).	Kroll	et	al.	(2017)	make	a	reference	to	this	theorem	on	p.	652,	relating	

it	to	the	Halting	problem.	
46
		 Using	First	Order	 Predicate	 Calculus	 (or	First	Order	 Logic),	 the	 result	 can	 be	 stated	 along	 the	 following	 lines:	

¬ ∃ 𝑇𝑀: ∀ (… ).	Which	does	not	mean	it	is	not	true	that:	∀ …  ∃ 𝑇𝑀: (… ).		
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particular	algorithm	or	set	of	algorithms.	This	lack	of	robustness	may	question	the	viability	of	

an	ex-ante	assessment	exercise.	

The	 above	 impossibility	 result	 places	 serious	 limits	 to	 an	 ex-ante	 assessment	 exercise	 as	

seemingly	proposed	by	some	authors.	Some	will	say	that	this	is	the	price	to	pay	for	eschewing	

an	 assessment	 program	 that	 is	 allowed	 to	 commit	 errors	 type	 I	 and	 II,	 and	 that	 there	 is	 no	

need	 to	 pay	 such	 a	 heavy	 price.	Maybe	Harrington’s	 three	 step	 research	 program,	 together	

with	a	definition	of	liability	that	maximizes	the	Likelihood	Ratio	𝐿𝑅 𝑃𝑃𝐴 	points	us	in	the	right	

direction.	

As	 a	 realistic	 alternative	 to	 never	 committing	 errors	 type	 I	 and	 II,	 Harrington	 proposes	 the	

maximization	 of	 the	 likelihood	 ratio	 𝐿𝑅 𝑃𝑃𝐴 ≝ 1 − 𝑃𝑟𝑜𝑏 𝑒𝑟𝑟𝑜𝑟 𝑡𝑦𝑝𝑒 𝐼𝐼 ÷

 𝑃𝑟𝑜𝑏 𝑒𝑟𝑟𝑜𝑟 𝑡𝑦𝑝𝑒 𝐼 ,	where	𝐿𝑅 𝑃𝑃𝐴  measures	the	efficacy	of	a	particular	definition	of	liability.	

In	order	to	calculate	such	ratio,	one	will	need	to	define	a	probability	measure	on	the	sample	

space	Ω	 of	 all	 pricing	 algorithms	𝑃𝐴.	 If	 we	 do	 not	 restrict	 at	 the	 outset	 the	 set	 of	 allowed	

pricing	algorithms	 to	be	FA	 (more	precisely,	Moore	machines)	with	at	most	 two-states,	 then	

the	 space	Ω	 is	 infinite.	 For	example,	we	can	 take	 the	 strategy	 “tit-for-tat”	 in	 the	 IRPD	Game	

and	build	another	(supergame)	strategy,	call	 it	𝜑!,	where,	 in	the	first	period	of	the	game	the	

player	cooperates,	and	after	a	deviation	by	the	other	player,	this	player	deviates	as	well	for	𝑛	

consecutive	 periods,	where	𝑛 ≥ 2.	 For	 each	 number	𝑛,	 there	 is	 a	 low	 enough	 time	 discount	

factor	 for	both	players	such	that,	under	perfect	 information	(a	sufficient	but	not	a	necessary	

condition),	 the	pair	 of	 strategies	 (“tit-for-tat”; 𝜑!)	 constitutes	 a	 subgame	perfect	 equilibrium	

supporting	cooperation/collusion	in	every	period	of	the	IRPD	game.	Clearly,	there	are	infinitely	

many	 (supergame)	 strategies	𝜑!,	where	𝑛 ≥ 2.	That	 the	 space	Ω	 is	 infinite	 but	 denumerable	

results	from	the	well-known	fact	that	the	set	of	all	algorithms	(or	TMs),	of	which	Ω	is	a	(strict)	

subset,	is	an	infinitely	denumerable	set.		

Assume	now	we	can	partition	the	space	Ω	 into	two	disjoint	subsets	𝑃𝑃𝐴	and	Ω ∖ 𝑃𝑃𝐴,	where	

𝑃𝑃𝐴	 denotes	 the	 set	 of	 all	 prohibited	pricing	 algorithms.	Hence,	 all	 pricing	 algorithms	 in	 set	

Ω ∖ 𝑃𝑃𝐴	are	 not	 prohibited	 (by	 the	 regulatory	 agency).	 Assume	 as	well	we	 can	 partition	 the	

space	Ω into	 the	 disjoint	 subsets	 𝑝𝑎 is collusive  and	 𝑝𝑎 is competitive ,	 where	 ‘competitive’	

means	 ‘not	 collusive’.	 Then,	 one	 can	 (theoretically)	 define	 the	 conditional	 probabilities	

𝑃𝑟𝑜𝑏 𝑝𝑎 ∉  𝑃𝑃𝐴 𝑝𝑎 is collusive  and	𝑃𝑟𝑜𝑏 𝑝𝑎 ∈  𝑃𝑃𝐴 𝑝𝑎 is competitive .	 However,	 can	 we	

decide	 whether	 any	 pricing	 algorithm	 𝑝𝑎	 is	 in	 the	 set	 𝑃𝑃𝐴 ?	 More	 precisely,	 is	 there	 an	

algorithm	(TM)	that	decides	membership	in	set	𝑃𝑃𝐴?	The	same	query	can	be	asked	about	the	

subset	 𝑝𝑎 is competitive .	

Result	2:	The	answer	to	both	these	questions	is	negative	–	see	annex	1	for	a	line	of	proof.	This	

means	none	of	the	conditional	probabilities	is	computable.		

Since	 1 − 𝑃𝑟𝑜𝑏 𝑒𝑟𝑟𝑜𝑟 𝑡𝑦𝑝𝑒 𝐼𝐼 = 1 − 𝑃𝑟𝑜𝑏 𝑝𝑎 ∉  𝑃𝑃𝐴 𝑝𝑎 is collusive ,	and	𝑃𝑟𝑜𝑏 𝑒𝑟𝑟𝑜𝑟 𝑡𝑦𝑝𝑒 𝐼 =

𝑃𝑟𝑜𝑏 𝑝𝑎 ∈  𝑃𝑃𝐴 𝑝𝑎 is competitive ,	 it	 follows	 that	 likelihood	 ratio	 given	 by	

1 − 𝑃𝑟𝑜𝑏 𝑒𝑟𝑟𝑜𝑟 𝑡𝑦𝑝𝑒 𝐼𝐼 ÷  𝑃𝑟𝑜𝑏 𝑒𝑟𝑟𝑜𝑟 𝑡𝑦𝑝𝑒 𝐼 ,	 is	 a	 non-computable	 function
47
.	 Hence,	 its	

																																																													
47
		 Given	 a	 probability	 space	 Ω,ℱ,𝑃 	 and	 a	 sub-sigma-algebra	ℬ	 of	ℱ,	 the	 conditional	 probability	𝑃 𝐴 ℬ 	 of	 a	

measurable	subset	𝐴 ∈ ℱ	is	defined	as	the	conditional	expectation	𝐸 𝐴 ℬ 	of	indicator	function	𝑖!	of	subset	𝐴	

given	ℬ.	I.e.,	𝑃 𝐴 ℬ ≝ 𝐸 𝐴 ℬ ,∀𝐴 ∈ ℱ.	The	conditional	probability	𝑃 ∙ ℬ 	is	a	mapping	Ω×ℱ → 0,1 ⊂ ℝ.	A	

conditional	probability	𝑃 ∙ ℬ 	is	called	regular	if	 ∀𝜔 ∈ Ω :	𝑃 ∙ ℬ 𝜔 	is	also	a	probability	measure.	Assuming	

𝑃𝑟𝑜𝑏 𝑒𝑟𝑟𝑜𝑟 𝑡𝑦𝑝𝑒 𝐼 ≠ 0,	the	above	defined	 likelihood	ratio	 is	a	function	mapping	Ω×ℱ	 into	→ 0,+∞ ,	given	
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maximization	is	an	unsolvable	problem.	Of	course,	we	do	not	expect	the	different	jurisdictions	

to	actually	go	through	this	type	of	maximization	problem	when	attempting	to	define	liability.	

Most	likely,	how	liability	is	defined	can	be	better	understood	as	the	result	of	a	learning	process	

by	the	 jurisdiction	 itself	over	several	years	of	 law	enforcement.	 In	any	case,	the	above	result	

raises	doubts	on	how	far	we	can	go	in	controlling	for	the	efficacy	of	any	definition	of	liability	in	

competition	law.	

On	 a	 self-regulatory	 option,	 notice	 that	 at	 any	 point	 in	 time	 each	 firm	may	 only	 know	 the	

algorithms	 it	 employs	 to	 carry	out	 its	market	 strategies
48
,	 but	not	necessarily	 the	algorithms	

employed	by	other	firms	operating	in	the	market.	Which	means	that	each	firm	will	not	be	able	

to	simulate	with	a	high	enough	degree	of	accuracy	how	its	own	algorithms	will	behave	period	

after	 period	 as	 they	 interact	 with	 other	 algorithms.	 Unless	 each	 firm	 engages	 in	 repeated	

simulation	 exercises	 by	 assuming	 different	 sets/vectors	 of	 algorithms	 that	 may	 be	 used	 by	

other	 firms.	 Which	 could	 be	 quite	 costly	 and	 not	 very	 informative.	 Under	 such	 limited	

information	 scenario,	 self-regulation	 may	 not	 be	 an	 effective	 enough	 option	 to	 meet	 the	

standards	imposed	by	a	competition	or	regulatory	agency.	

	

V. Ex-post	auditing	and	sanctioning	and	its	limits	

	

In	 an	 ex-post	 situation,	 i.e.,	 when	 a	 specific	 ex-post	 investigation	 is	 opened
49
,	 we	 assume	 a	

given	 set	 of	 algorithms	 employed	 by	 the	 different	 firms	 will	 be	 analyzed	 by	 the	

regulatory/competition	agency.	It	is	likely	this	investigation	will	involve	simulating	the	behavior	

of	those	algorithms	as	they	are	given	as	input	data	on	relevant	variables	such	as	prices.	Such	

data,	at	least	in	part,	are	produced	period	after	period	by	the	algorithms	themselves,	as	their	

output	while	they	run	in	an	interactive	way.	The	aim	will	be	to	compare	the	output	from	such	

simulations	 to	 the	output	 observed	 in	 the	market	 and	decide	whether	 it	 can	be	 established	

with	a	high	enough	degree	of	certainty	there	was	algorithmic	price	collusion
50
.		

																																																																																																																																																																																			
the	probability	space	 Ω,ℱ,𝑃 ,	where	Ω	is	the	set	(space)	of	all	pricing	algorithms, ℱ	is	a	𝜎-algebra	in	Ω,	and	𝑃	

is	a	probability	measure.	
48
		 Assume	 that	 to	 know	 an	 algorithm	 might	 mean	 to	 know	 some,	 but	 not	 necessarily	 all,	 of	 its	 relevant	

characteristics.		
49
		 In	 the	 EU,	 Article	 101	 (TFEU)	 cases	 can	 originate	 in:	 (1)	 a	 complaint,	 (2)	 opening	 of	 an	 own–initiative	

investigation,	(3)	information	reported	by	individuals	via	the	"whistleblower"	tool,	or	(4)	a	leniency	application	

from	 one	 of	 the	 participants	 to	 a	 cartel.	 –	 see	

http://ec.europa.eu/competition/antitrust/procedures_101_en.html.	 Recall	 that	 Article	 101	 (TFEU)	 prohibits	

agreements	 between	 undertakings,	 decisions	 by	 associations	 of	 undertakings	 and	 concerted	 practices	 which	

may	affect	trade	between	Member	States	and	which	have	as	their	object	or	effect	the	prevention,	restriction	or	

distortion	of	competition	within	the	internal	market.	Regulation	1/2003	introduced	a	system	of	decentralized	ex	

post	 enforcement,	 in	 which	 the	 European	 Commission	 and	 the	 national	 competition	 authorities	 of	 the	 EU	

Member	 States	 forming	 together	 the	 European	Competition	Network	 (ECN),	 pursue	 infringements	of	Articles	

101	and	102	TFEU.	Article	102	prohibits	the	abuse	of	a	dominant	position	within	the	internal	market	in	so	far	as	

it	may	affect	trade	between	Member	States.	
50
		 In	 a	 more	 recent	 paper,	 Calvano	 et	 al.	 (2018b)	 create	 an	 environment	 to	 analyze	 the	 interaction	 among	 a	

number	of	‘Q-learning	algorithms’	in	the	context	of	an	oligopoly	model	of	price	competition	with	Logit	demand	

and	constant	marginal	costs.	They	show	that	«algorithms	consistently	learn	to	charge	supra-competitive	prices,	

without	 communicating	with	 each	other.	 The	high	prices	 are	 sustained	by	 classical	 collusive	 strategies	with	a	

finite	punishment	phase	 followed	by	a	gradual	 return	 to	cooperation.	This	 finding	 is	 robust	 to	asymmetries	 in	

cost	or	demand	and	to	changes	in	the	number	of	players».	
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Desai	&	 Kroll	 (2018),	 Kroll	 et	 al.	 (2017),	 and	 other	 authors,	 discuss	 different	 approaches	 for	

testing	and	evaluating	algorithms
51
.	For	example,	‘White-box	testing’	is	a	method	for	analyzing	

software	that	tests	internal	structures	or	workings	of	an	application.	It	is	a	method	to	test	an	

application	 at	 the	 level	 of	 the	 ‘source	 code’
52
.	 ‘Black-box	 testing’	 is	 a	 method	 for	 software	

testing	 that	 examines	 the	 functionality	 of	 an	 application	 without	 peering	 into	 its	 internal	

structures	 or	workings.	 Both	 types	 of	 testing	 can	 follow	methods:	 (1)	 static	methods,	which	

look	 at	 the	 code	 without	 running	 the	 program;	 and	 (2)	 dynamic	 methods,	 which	 run	 the	

program	 and	 assess	 the	 outputs	 for	 particular	 inputs	 or	 the	 state	 of	 the	 program	 as	 it	 is	

running
53
.	 Nevertheless,	 and	 as	 pointed	 out	 by	Desai	&	 Kroll,	 these	 testing	methods	 cannot	

escape	the	unsolvability	of	the	‘Halting	Problem’.		

Apart	from	‘White-box	testing’	and	‘Black-box	testing’,	Desai	&	Kroll	(2018)	analyze	a	third	way	

to	test	software	and	algorithms,	namely	“Ex-post	Analysis	and	Oversight”.	This	approach	may	

have	several	appealing	features	but	as	recognized	by	the	authors,	«software	that	uses	certain	

types	of	machine	learning	or	is	modified	frequently	by	or	is	modified	frequently	by	its	operators	

to	 respond	 and	 adapt	 to	 dynamic	 inputs	 and	 user	 behavior,	 are	 not	 addressed	 well	 by	 the	

solutions	 presented	 [‘white-box	 testing’,	 ‘black-box	 testing’,	 “ex-post	 analysis	 and	oversight].	

Many	systems	change	often,	either	because	of	 regular	changes	by	designers	or	because	 they	

use	 automated	 processes	 such	 as	 online	 machine	 learning	 models	 which	 “can	 update	 their	

predictions	 after	 each	 decision,	 incorporating	 each	 new	 observation	 as	 part	 of	 their	 training	

data.”	 The	 approach	 of	 creating	 an	 audit	 log	 showing	 that	 everyone	 is	 subject	 to	 the	 same	

decision	 policy	 is	 less	 useful	 when	 systems	 are	 dynamic	 and	 change	 over	 time	 because	 the	

system	may	 (desirably)	 change	 between	 decisions».	 The	 type	 of	 algorithms	 that	 are	 raising	

concerns	 in	the	enforcement	of	antitrust	 law	are	exactly	 learning	algorithms	 that	can	update	

their	 predictions	 after	 each	 decision,	 incorporating	 each	 new	 observation	 as	 part	 of	 their	

training	data.	

	

To	 competition	 law	 and	 economics	 scholars	 and	 practitioners,	 it	 still	 seems	 unclear	 how	

efficient	 can	 ex-post	 auditing	 and	 sanctioning	 become	 when	 dealing	 with	 algorithms	 as	

facilitators	 of	 collusive	 behavior	 in	 repeated	 games,	 and	 with	 increasingly	 sophisticated	

algorithms	 that	 can	 interact	 as	 autonomous	 implementers	 of	 pricing	 strategies,	 learning	 to	

collude	without	any	explicit	instructions	provided	by	human	agents.	

	

VI. Conclusions	

To	what	extent	can	competition	policy	keep	a	distinction	between	tacit	and	explicit	collusion?	

To	 the	 difficulties	 pointed	 out	 by	 L.	 Kaplow	 (2011),	 namely	 on	 a	 consensual	 and	 precise	

																																																													
51
		 Kroll	and	Desai	&	Kroll	do	mention	computational	unsolvability	in	the	legal	context	of	algorithmic	transparency.	

My	goal	is	to	explore	the	limits	that	are	imposed	by	computational	unsolvability	on	ex-ante	and	ex-post	antitrust	

policy	in	the	specific	context	of	algorithmic	collusion.		
52
		 According	to	the	Linux	Information	Project

52
,	‘source	code’	is	defined	as	the	version	of	software	as	it	is	originally	

written	(i.e.,	typed	into	a	computer)	by	a	human	in	plain	text	(i.e.,	human	readable	alphanumeric	characters)	-	

see	http://www.linfo.org/	
53
		 As	 referred	 by	 Kroll	 et	 al.	 (2017,	 p.	 646/7),	 «Computer	 scientists	 evaluate	 [computer]	 programs	 using	 two	

testing	methodologies:	(1)	static	methods,	which	look	at	the	code	without	running	the	program;	and	(2)	dynamic	

methods,	which	run	the	program	and	assess	the	outputs	for	particular	inputs	or	the	state	of	the	program	as	it	is	

running.	Dynamic	methods	can	be	divided	into	(a)	observational	methods	in	which	an	analyst	can	see	how	the	

program	runs	 in	the	field	with	 its	natural	 inputs;	and	(b)	testing	methods,	which	are	more	powerful,	where	an	

analyst	chooses	inputs	and	submits	them	to	the	program».	
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definition	of	the	concept	“agreement”,	the	increasing	use	of	“smart	algorithms”	may	introduce	

additional	 challenges	as	 these	 type	of	algorithms	can	 facilitate	 tacit	 collusion	and	 lead	 to	an	

increased	blurring	of	borders	between	tacit	and	explicit	collusion	–	see	also	Harrington	(2018).	

As	shown	by	some	authors	in	very	recent	work	–	see	Calvano	et	al.	(2018a,b)	-	the	interaction	

among	Q-learning	algorithms	in	the	context	of	an	oligopoly	model	of	price	competition,	these	

algorithms	consistently	learn	to	charge	supra-competitive	prices,	without	communicating	with	

each	other.	The	high	prices	are	sustained	by	collusive	strategies	with	a	finite	punishment	phase	

followed	by	a	gradual	return	to	cooperation.	Hence,	we	might	not	be	any	more	in	the	realm	of	

science	fiction.	

How	 reliable	 and	 effective	 can	 be	 an	 ex-ante	 supervision	 and	 control	 exercised	 over	

algorithms?	How	reliable	and	effective	cab	be	an	ex-post	auditing	and	sanctioning	of	collusive	

algorithms?	I	show	that	computational	unsolvability	casts	some	doubts	over	how	efficient	both	

these	approaches	can	become
54
.	

Nevertheless,	software	testing	is	carried	out	routinely	–	as	shown	by	Desai	&	Kroll	(2018)	and	

by	Kroll	et	al.	(2017)	-,	and	we	may	simply	acknowledge	that	the	way	liability	is	defined	and	the	

way	ensuing	regulation	and	sanctioning	are	exercised	rely	on	a	“learning-by-doing”	approach	

and	accept	that	errors	type	I	and	II	will	be	committed,	as	a	price	to	pay	for	getting	away	from	

non-decidability	or	 computational	 unsolvability.	However,	 it	 seems	we	have	 little	 clue	about	

the	 magnitude	 of	 such	 errors.	 Which	 in	 turn	 may	 affect	 how	 productive	 the	 “learning-by-

doing”	 approach	 may	 be.	 Moreover,	 the	 ongoing	 research	 on	 various	 challenges	 current	

software	 systems	 pose	 will	 likely	 have	 an	 impact	 on	 how	 to	 deal	 with	 the	 legal	 challenges	

referred	above.	

Competition	 law	 enforcement	 and	 policy	 have	 much	 to	 gain	 from	 an	 interdisciplinary	

collaboration	with	 computer	 science	 and	mathematics.	 Some	 familiarity	 with	 computability,	

computational	 complexity	 and,	 I	 would	 venture	 to	 say,	 with	 the	 theory	 of	 languages	 and	

grammars,	may	 help	 scholars	working	 in	 competition	 law	 and	 economics	 to	 better	 face	 the	

legal	challenges	posed	by	artificial	intelligence.	A	refinement	of	some	legal	concepts	could	very	

well	be	a	positive	externality	from	such	collaboration.	

	

	

	

	

	

	 	

																																																													
54
		 Notice	that	the	use	of	“quantum	TM”	does	not	make	solvable	a	problem	that	is	unsolvable	using	a	non-quantum	

TM	–	see	D.	Deutsch	(1985).	
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Annex	1:		

Line	of	Proof	 (for	Result	1):	 If	we	accept	 the	Church-Turing	Thesis	 (which	states	 that	Turing	Machines	

(TMs)	 are	 formal	 versions	 of	 algorithms,	 and	 that	 no	 computational	 procedure	 can	 be	 considered	 an	

algorithm	unless	it	can	be	presented	as	a	TM	–	see	Lewis	&	Papadimitriou,	ch.5),	a	‘learning	algorithm’	

(LA)	can	be	regarded	as	a	TM.	In	each	period	a	LA	will	receive	as	input	some	data	on	prices,	costs,	and	

other	 relevant	 parameters.	 Given	 this	 input	 (notice	 that	 these	 data	 can	 be	 coded,	 by	 use	 of	 Gödel	

numbers,	into	a	single	integer),	the	LA	outputs	a	‘pricing	algorithm’	(that	can	be	played	by	a	FA	or	a	TM).	

This	 pricing	 algorithm	 can	 also	 be	 coded	 into	 a	 single	 integer.	 Hence,	 the	 LA	 computes	 a	 function	

mapping	integer	numbers	into	integer	numbers.	The	domain	and	codomain	of	such	mapping	are	subsets	

of	the	set	ℕ of	natural	numbers.	This	mapping	is	a	partial	recursive	1-ary	function.	Meaning	that	when	

an	input	is	undefined	(e.g.,	there	are	natural	numbers	which	do	not	code	any	meaningful	data)	so	is	its	

output;	and	that	this	mapping	is	computable,	i.e.,	recursive	(which	is	by	assumption).	If	we	want	some	

LA	to	be	prohibited	per	se,	it	means	that	for	certain	inputs,	they	will	compute,	or	output,	unacceptable	

‘pricing	algorithms’.	We	can	then	say	that	each	of	these	LA’s	computes	a	partial	recursive	1-ary	function	

belonging	to	a	certain	“forbidden”	or	“prohibited”	set	ℂ.	Let	ℊℂ	denote	the	set	of	all	codes	where	each	

code	uniquely	identifies	a	partial	recursive	1-ary	function	in	set	ℂ.	Set	ℊℂ	is	clearly	non-empty	(as	there	

are	acceptable	pricing	algorithms).	And	set	ℊℂ	 is	 also	different	 from	the	 set	ℕ of	natural	numbers	 (as	

there	are	unacceptable	pricing	algorithms,	such	as	the	ones	implementing	a	grim-trigger	strategy).	I.e.,	

∅ ≠ ℊℂ ≠	ℕ.	Then,	by	H.	G.	Rice’s	Theorem	(1953)	–	see	below	-,	set	ℊℂ	is	not	recursive,	i.e.,	there	is	no	

‘algorithm’	 that	decides	membership	 in	 this	 set.	 Therefore,	 there	 is	no	 ‘algorithmic	 judge’	 that,	when	

presented	with	a	LA,	will	be	always	able	to	decide	whether	this	LA	should	be	prohibited	or	not.		

	

It	is	easy	to	extend	the	previous	result	and	proof	to	the	case	when	a	vector	of	TM’s	are	to	be	subject	to	

analysis	 and	 judgement	by	an	 “algorithmic	 regulator/supervisor”.	A	 vector	of	𝓃	 TM’s	 can	given	as	 an	

input	 to	n	Universal	 Turing	Machine	 (UTM)	 through	 their	Gödel	 numbers.	Or	 just	 encode	each	of	 the	

𝓃 TM’s	 into	a	Gödel	number	ℊ!  and	 then	encode	 the	 resulting	vector	of	𝓃	Gödel	numbers	as	 follows:	

ℊ!,  ℊ!,  … ,ℊ𝓃 = 𝑝
!

ℊ!𝓃

!!! ,	where	𝑝!	are	prime	numbers.	Give	also	as	input	to	the	UTM	the	data	that	

is	to	be	given	to	the	𝓃	TM’s.	And	let	the	UTM	simulate	the	calculations	carried	out	by	the	𝓃	TM’s.	¢	

	

Line	of	Proof	(for	Result	2):	It	follows	from	Result	1,	by	use	of	Rice’s	Theorem.	As	there	is	no	algorithm	

that	decides	membership	in	set	𝑃𝑃𝐴,	there	is	no	algorithm	that	decides	membership	in	its	complement,	

i.e.,		in	the	set	of	all	PA’s	such	that	 𝑃𝐴 is competitive .	

	

Theorem	by	H.	G.	Rice	(1953):	Let	𝒟	be	a	set	of	partial	recursive	one-ary	functions.	And	let	𝒢𝒟	be	denote	

the	set	 𝑛 ∈ ℕ: 𝜑! 
!
∈ 𝒟 .	 If	∅ ≠ 𝒢𝒟 ≠	ℕ	 then	the	set	𝒢𝒟	 is	not	 recursive	 -	 see	H.	Rogers	 (1987),	or	M.	

Davis	&	E.	Weyuker	(1983)	for	a	statement	and	proof	of	Rice’s	Theorem.	

Rice’s	Theorem	basically	states	that	 in	computational	 theory,	all	non-trivial	 (i.e.,	neither	true	nor	 false	

for	 every	 computable	 function)	 semantic	 (i.e.,	 behavior)	 properties	 of	 algorithms/computer	 programs	

are	undecidable.	For	example,	whether	a	computer	program	will	eventually	halt	on	any	input	string	is	a	

semantic	property.	
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Annex	2:		

A	Finite	Automaton	(FA)	is	a	simple	computational	model	with	a	fixed	memory.	It	can	be	defined	as	a	5-

tuple	 𝑆,𝛴,  𝛿,  𝑠!,𝐹 ,  where	𝑆	is	the	set	of	states	of	the	machine,	𝛴 is	the	input	alphabet,	𝛿: 𝑆×𝛴 → 𝑆	is	

the	transition	function,	𝑠!	is	the		initial	state,	and	𝐹	is	the	set	of	final	(or	accepting)	states,	where	𝐹 ⊆	𝑆.	

	

A	useful	way	of	looking	at	a	FA	is	to	regard	it	as	a	simple	‘language	recognition	device’.	When	we	feed	

any	string	𝑥 of	symbols	(over	an	alphabet)	to	an	FA,	the	device	(FA)	can	either	end	up	in	an	‘accepting	

state’	or	not.	If	it	does,	we	say	this	string	has	been	accepted,	or	recognized,	by	the	device	(FA).	The	set	

of	all	strings	accepted	by	an	FA	represents	the	‘language’	accepted	by	this	FA.	Another	way	to	look	at	an	

FA	is	to	regard	it	as	a	simple	computing	device	with	a	fixed	(finite)	capacity	central	processing	unit	(CPU),	

with	no	auxiliary	memory,	and	where	its	output	is	binary	(0	or	1,	Yes	or	No).	

	

There	are	several	variations	and	extensions	of	the	notion	of	FA,	such	as	an	FA	with	output.	For	example,	

a	Moore	machine	is	defined	as	a	6-tuple	 𝑆,𝛴,  𝛥, 𝛿,  𝜆, 𝑠! ,	where	𝑆,𝛴,  𝛿,  and 𝑠!	are	defined	as	before,	

and	where	𝛥 is	 the	output	alphabet	and	𝜆: 𝑆 → 𝛥	 is	 the	output	 function.	An	FA	can	then	be	seen	as	a	

Moore	machine	where	 the	 output	 alphabet	𝛥 = 0,1  ,  and	where	 state	 s is	 ‘accepting’	 if	 and	 only	 if	

𝜆 𝑠 = 1.  	

	

A	Turing	Machine	(TM)	is	a	very	general	model	of	a	computer	(a	CPU,	plus	an	auxiliary	memory	and	an	

input/output	device).	It	is	a	computing	device	with	an	unbounded	and	unrestricted	access	memory.	This	

feature	 sets	 the	 computational	 capability	 of	 a	 TM	 quite	 above	 the	 computational	 capability	 of	 a	 FA.	

Informally,	a	TM	consists	of:	

(1)	A	collection	of	distinct	symbols	called	an	alphabet	A,	and	which	includes	a	symbol	called	the	‘blank	

symbol’;	

(2)	 A	 tape,	 i.e.,	 a	 "roll	 of	 paper"	 on	which	 calculations	 are	 performed,	which	 is	 divided	 into	 cells	 (or	

squares)	and	is	infinite	in	both	directions.	At	any	given	time	during	a	"computation",	all	but	a	finite	

number	of	cells	are	"blank",	i.e.,	contain	the	blank	symbol;	

(3)	A	finite	set	of	states.	A	state	can	be	thought	of	as	describing	the	internal	configuration	of	the	TM	at	

any	particular	instant;	

(4)	A	read-write	head	which	at	any	given	time	is	scanning	(i.e.,	reading)	the	contents	of	one	cell	of	the	

tape,	and	is	capable	of	replacing	the	symbol	scanned	by	another	symbol;	

(5)	A	finite	ordered	list	of	instructions.	Each	instruction	either:	

(5.1)	tells	the	computer	to	halt	(i.e.,	stop)	or,	

(5.2)	 tells	 the	 computer	what	 next	 state	 to	 enter	 and	 tells	 the	 read-write	 head	 to	 do	 one	 of	 the	

following:	

(5.2.1)	move	one	cell	to	the	left;	

(5.2.2)	move	one	cell	to	the	right;	

(5.2.3)	replace	the	symbol	scanned	by	another	symbol.	

	

Each	TM	can	be	thought	of	as	a	finite	list	of	instructions.	Each	instruction	describes	the	present	status	of	

the	machine	(i.e.,	the	present	state	and	the	symbol	being	read	by	the	tape	head)	and	what	the	next	step	

in	 the	 computation	will	 be.	 To	 each	 TM	we	 can	 assign	 a	 number	 (a	 positive	 integer)	which	 uniquely	

identifies	it.	That	is,	to	each	TM	we	can	associate	a	"code"	number.	But	not	every	positive	integer	is	the	

code	for	some	TM.		

Formally,	a	Turing	Machine	 is	defined	as	a	quadruple	 𝐾,𝛴, 𝑠!, 𝛿 ,  where	𝐾	 is	a	finite	set	of	states	(of	

the	machine)	not	 containing	 the	 ‘halt	 state’	ℎ;	𝛴 is	 an	alphabet,	 containing	 the	blank	 symbol,	but	not	

containing	 the	 symbols L	 and	 R	 (for	 ‘Left’	 and	 ‘Right’);	 𝑠!	 is	 the	 initial	 state;	 and	 𝛿:𝐾×𝛴 → (𝐾 ∪

ℎ )×(𝛴 ∪ 𝐿,𝑅 )	is	the	transition	function.	

A	Universal	 Turing	Machine	 (UTM)	 is	 a	 TM	 that	 takes	 as	 arguments	both	 the	encoding	𝜌 ℳ 	 of	 any	

Turing	Machine	ℳ,	and	any	input	string	𝓌,	and	performs	whatever	operations	on	𝓌	would	have	been	

performed	 by	ℳ	 –	 see	 e.g.,	 Lewis	&	 Papadimitriou	 (1981),	 section	 5.7.	 The	 encoding	 of	 any	 TM	 can	

follow	the	Gödel	numbering	system,	itself	based	on	the	Fundamental	Theorem	of	Arithmetic,	also	called	
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the	Unique	Factorization	Theorem	(due	to	C.	F.	Gauss,	1801),	which	states	that:	Any	positive	integer	can	

be	uniquely	factored	into	a	product	of	powers	of	prime	numbers.	

A	UTM	can	also	take	as	arguments	the	encodings	of	𝓃	Turing	Machines,	plus	any	input	strings,	one	per	

TM,	and	simulate	the	interaction	of	these	𝓃	TMs	when	initiated	with	these	input	strings.	

The	 Halting	 Problem	 (when	 applied	 to	 TMs):	 Given	 an	 arbitrary	 Turing	Machine	ℳ and	 an	 arbitrary	

input	𝓌,	can	it	be	determined	whether	this	TM	will	eventually	halt	on	input	𝓌?	It	can	be	shown	that:	

Given	an	arbitrary	Turing	Machine	ℳ and	an	arbitrary	 input	𝓌,	 there	 is	no	algorithm	for	determining	

whether	ℳ will	eventually	halt	on	input	𝓌.	Hence	the	Unsolvability	of	the	Halting	Problem.	
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